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With advances in video coding technology, two main streams of multimedia
applications are emerging. The first involves more vivid perceptual experience
and is leading to the next generation of TV specifications – Quad Full HD (QFHD,
4096×2160p) and 3D/multi-view TV. The second is the scalable broadcasting
and streaming of video.

To support these applications, the worldwide first video decoder that supports
three most advanced video coding standards – H.264/AVC High Profile, multi-
view video coding (MVC), and scalable video coding (SVC), is realized. Three
main design challenges are encountered. 1) Conventional block-pipelining
scheduling and architecture cannot efficiently support diverse SVC decoding
schemes. 2) Up to 300Mbps high data-rate entropy decoding is required for
QFHD, which is 2.3× that achieved in current state-of-the-art design [1]. 3) An
external memory bandwidth (BW) of over 7.9GB/s is required for motion com-
pensation (MC) in QFHD. Moreover, additional BW is required for inter-layer pre-
diction (ILP) in SVC.  High external memory BW results in high DRAM power
consumption. Current state-of-the-art approaches [2-5] cannot resolve these
issues effectively.

Three key design techniques of this chip are summarized as follows. 1) Frame-
to-MB-level ILP scheduling optimization for SVC spatial scalability decoding, and
a layer-interleaving decoding scheme for SVC quality scalability decoding. 2)
Branch selection multi-symbol high-throughput context-based adaptive binary
arithmetic decoder (CABAD) for high data-rate decoding. 3) Cache-based MC
architecture and dedicated DRAM controller with DRAM data access optimiza-
tion to reduce the external memory BW.

Figure 18.3.1 shows the system architecture and the proposed three-stage asyn-
chronous macroblock (MB) pipeline scheduling. The three MB pipeline stages
contain an entropy decoder, texture decoder, prediction engine, and deblocking
filter. Three new coding tools, which are upsample, padding and MVC engine, are
developed for SVC and MVC. The three MB pipeline stages start asynchronous-
ly as long as their inputs are ready. It eliminates idle cycles and reduces up to
18% of processing cycles. Moreover, a dedicated DRAM controller is embedded
in our design to reduce DRAM access latency by optimizing the DRAM command
order and data mapping.

Figure 18.3.2 shows the decoding scheduling optimization for SVC spatial scal-
ability (SS) and quality scalability (QS). In SS, the ILP data for the enhancement-
layer (EL) decoding are generated after the base-layer (BL) decoding followed by
frame-level processes of padding and upsampling. Significant BW is required to
arrange the intermediary frame-level data. Since the padding and upsampling
can be performed on-the-fly with BL and EL decoding respectively, the padding
and upsampling are merged into the three-stage MB pipeline after frame-level re-
scheduling. 34% of processing cycles and 72~82% of ILP BW are saved. For
SVC QS, the conventional layer-by-layer decoding schedule requires over 41%
of the total decoding memory BW for ILP data. A layer-interleaving decoding
scheme that decodes data of each layer in one MB in an interleaved manner is
proposed. This scheme eliminates the external memory BW of ILP and reduces
the total decoding BW by 41~51%.

Figure 18.3.3 shows the proposed branch selection multi-symbol CABAD archi-
tecture. The context model (CM) cache is adopted to reduce CM memory access
latency and improve decoding throughput. A branch selection scheme is pro-
posed to compute all possible CMs of the next two decoding bins and fetch them
in advance. The branch selection scheme with CM cache boosts the throughput
to 1.95 bins/cycle. Thus, it suffices for decoding a bitstream of 300Mbps, the
maximum bitrate defined in H.264. In SVC QS, the layer-interleaving decoding
scheme results in frequent CM memory access because the CM cache must be

reloaded once the quality layer is changed. An adaptive write-back control is
adopted to update the modified CM groups in each layer. An extra CM cache is
added for quality enhancement layer texture coding which is the most frequent-
ly used CM type in QS decoding. These two schemes reduce 86% of CM mem-
ory access and 23% of processing cycles in SVC QS decoding.

Figure 18.3.4 shows the cache-based MC architecture and DRAM data access
optimiza tion approaches. A 2D-mapped two-way associative cache system is
adopted to reuse the loaded reference frame pixels. Every reference frame pixel
is 2D-mapped into one of the 64 cache banks. Each bank contains two cache
lines. In the proposed cache system, luminance and chrominance data share the
same tags. Each cache line contains 8×2 Y pixels and the corresponding 4×1 Cb
and Cr pixels. The tag sharing strategy eliminates cache checking cycles and tag
storage of chrominance data. The cache-based MC reduces data BW by 41% and
DRAM latency BW by 30% compared with variable block size MC (VBSMC) [2,
4]. Access pattern reordering is em ployed to load pixels within the same DRAM
bank together. It eliminates 67% of DRAM PRECHARGE/ACTIVE (P/A) activity.
To further reduce access latency, the DRAM controller issues P/A commands
out-of-order. The above two DRAM access approaches contribute to a DRAM
latency BW reduction of 77%. In the proposed system, the DRAM bank mapping
differs between the forward- and backward-list refer ence frames. This bank
interleaving pattern can mitigate the problem of bank conflict be tween two adja-
cent accesses in B-frame MC. It can further reduce 66% of DRAM la tency BW.
The total MC BW is 76% less than that of the VBSMC only scheme [2].

The detailed chip features are summarized in Fig. 18.3.5. The core size is
3.88mm2, which includes 414.3K gates and 9.0 KB on-chip SRAM. The chip
micrograph is shown in Fig. 18.3.7. This chip can decode H.264/AVC High-
Profile, SVC High Profile, and MVC High Profile with only 11% logic gates and
25% on-chip SRAM over head. The power consumption is first reduced by archi-
tecture-level optimization: A highly parallel architecture for MC is developed to
reuse accessed reference pixels and interpolated data for memory and compu-
tation power reduction; cache system is ap plied in MC/ED/DB/UP for less SRAM
access. Operation rejection of DB processing and residual SRAM accessing is
achieved by detecting zero DB boundary strength and all-zero/DC blocks. Finally,
operand isolation and hierarchical clock gating are employed to reduce the
power of inactive circuits. A total power reduction of 69% is achieved.

Figure 18.3.6 shows the performance comparison. With the proposed high
throughput entropy decoder, cache-based MC with DRAM access optimization
and low-power techniques, the proposed design improves the throughput by
1.71× to 3.41× with 47% less power consumption compared with the previous
works. Additionally, with the ability to decode SVC, it supports spatial scalability
from QCIF to 1080HD, and quality scalability to provide various bitrate-quality-
power decoding trade-off points. View scalability for 3D and multi-view applica-
tions is also provided with MVC decoding. The proposed decoder can support
applications from low-power portable devices to high-end QFHD and 3DTV.
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Figure 18.3.1: System architecture and asynchronous MB pipeline scheduling. Figure 18.3.2: Proposed decoding scheduling for SVC SS and QS.

Figure 18.3.3: Branch selection CABAD architecture with CM caches.

Figure 18.3.5: Chip features, low power schemes and hardware overhead. Figure 18.3.6: Comparison with state-of-the-art decoder chips.

Figure 18.3.4: Cache-based MC architecture and DRAM access approaches.
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Figure 18.3.7: Chip micrograph.


